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Diffraction profiles for different models of dislocation arrangements are

calculated directly by the Monte Carlo method and compared with the strain

distributions for the same arrangements, which corresponds to the Stokes–

Wilson approximation. It is shown that the strain distributions and the

diffraction profiles are in close agreement as long as long-range order is absent.

Analytical calculation of the strain distribution for uncorrelated defects is

presented. For straight dislocations, the Stokes–Wilson and the Krivoglaz–

Wilkens approximations give the same diffraction profiles, with the Gaussian

central part and / q�3 power law at the tails.

1. Introduction

X-ray diffraction is a well established tool for studying dislo-

cations in crystals. Elastic fields of dislocations cause broad-

ening of the diffraction peaks. Since elastic strain due to a

dislocation decays very slowly [as 1=�, where � is the distance

from the dislocation line (see e.g. Landau & Lifshitz, 1970)],

the entire dislocation ensemble contributes to scattering

(Krivoglaz & Ryaboshapka, 1963; Wilkens, 1970a,b, 1976).

This collective effect makes the problem of intensity calcula-

tion fairly complicated, even if the dislocation distribution is

known. The inverse problem of retrieving the dislocation

distribution from X-ray diffraction data is far more compli-

cated. The analysis of the diffraction peak profiles from

crystals with dislocations and the software developed for this

purpose (Ribárik et al., 2001; Scardi & Leoni, 2002; Leoni et

al., 2007) are based on the seminal works by Krivoglaz &

Ryaboshapka (1963) and Wilkens (1970a,b, 1976), who

proposed the approximate solution for straight parallel

randomly located dislocations. We refer hereafter to the

original papers by Krivoglaz but note that the results of these

papers are also presented in his book (Krivoglaz, 1996).

The difficulty of theoretical analysis of X-ray diffraction

from crystals with dislocations stems from the general formula

for X-ray intensity that contains the difference between

displacements Uðr1Þ �Uðr2Þ in two points of the crystal. Here

UðrÞ is the displacement field due to all dislocations in the

crystal under investigation. The difference of displacements

enters in a phase factor of the exponential function which is

the subject of statistical average over the dislocation distri-

bution (exact expressions are given below). This statistical

average is complicated even for simple models of dislocation

distributions.

Seventy years ago, Stokes & Wilson (1944) proposed a

simple approximation, based on an assumption that only

correlations between closely spaced points have to be taken

into consideration. Then, the difference of displacements

Uðr1Þ �Uðr2Þ is proportional to the difference of coordinates

r1 � r2 and the local strain at the point r1 (or r2, since they

are close to each other). This approximation leads, after

straightforward calculation, to a simple result, that the

diffraction peak shape coincides with the strain probability

distribution. Below in x2 the derivation by Stokes & Wilson

(1944) is reproduced and discussed. Here it is worth noting

that the approximation was proposed even before direct

observation of dislocations in crystals by transmission electron

microscopy and is not specific to the strain field of dislocations.

The applicability limits of the Stokes–Wilson approximation

have not been established up to now. Since this approximation

presumes that only local correlations are essential, one can

expect that it fails when the correlations become long ranged,

i.e. when the strain slowly varies in space. However, Leine-

weber & Mittemeijer (2010) have arrived at an opposite

conclusion, that this approximation should be applicable when

regions of practically constant strain are present.

A key step in the derivation of their seminal formula by

Krivoglaz & Ryaboshapka (1963) is the approximation of the

difference of displacements due to a single dislocation

uðr1Þ � uðr2Þ by the local strain multiplied with the separation

r1 � r2. Hence, one can expect that the Stokes–Wilson

approximation is valid when the Krivoglaz–Wilkens approx-

imation is applicable, i.e. for random (or restrictedly random)

distributions of straight parallel dislocations. On the other

hand, the applicability of the Stokes–Wilson approximation is

broader, since it is not restricted to straight parallel disloca-

tions.
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Present-day computing power makes feasible a direct

calculation of diffraction peak profiles for given dislocation

distributions. Levine & Thomson (1997), Kamminga & Delhez

(2000) and Kaganer & Sabelfeld (2010) performed a statistical

average over dislocation ensembles by the Monte Carlo

method. These works study different arrangements of parallel

straight dislocations with predefined correlations. Although a

statistical average of quickly oscillating terms is required, a

Monte Carlo summation is a feasible, albeit laborious, task

on presently available computers. Balogh et al. (2012) have

generated realistic three-dimensional distributions of dislo-

cations using a discrete dislocation dynamics code. A direct

Monte Carlo calculation of diffraction peak profiles was too

computationally demanding, and the strain distributions were

calculated instead, by employing the Stokes–Wilson approx-

imation. The applicability of the approximation was justified

by analysing the obtained peak profiles on the basis of the

Krivoglaz–Wilkens theory. Upadhyay et al. (2014) calculated,

by the Monte Carlo method, diffraction profiles for several

types of dislocation distributions and compared them with the

calculations in the Stokes–Wilson approximation. The best

agreement is found for a three-dimensional dislocation

microstructure generated by the discrete dislocation dynamics

method and the worst one for a single dislocation, i.e. the

applicability of the Stokes–Wilson approximation increases

with increased disorder in the dislocation distribution.

Calculation of the strain distribution in an array of straight

parallel uncorrelated dislocations can be performed by

employing very general methods of statistics. Historically, the

first example of a similar problem was the distribution of the

electrostatic field in plasma derived by Holtsmark (1919).

Further development was done by Chandrasekhar (1943) for

statistics of gravitational force produced by a random distri-

bution of stars. The distribution they found for these three-

dimensional problems is close to a Gaussian distribution in the

central part and possesses a power-law dependence on the

tails. The central part is due to a sum of weak forces from

many distant sources, while the tails arise from a few nearest

sources. The probability density of the forces at the tail is

/ f�9=2, where f is the force. The two-dimensional problem of

straight dislocations is basically the same as the problem of

velocity distribution from random point vortices (Chavanis &

Sire, 2000) or the distribution of gravitational forces produced

by rods of mass (Chavanis, 2009). It possesses a Gaussian

distribution in the central part and a/ f�4 tail. It is also worth

mentioning that the Holtsmark distribution in three dimen-

sions belongs to the class of Levý stable distributions, while

the two-dimensional case is at the border between Levý and

Gaussian distributions and possesses a logarithmic divergence

with the system size (Chavanis, 2009). General formulas for

the strain or stress distribution due to random dislocations

were derived by Strunin (1967), Zasimchuk & Selitser (1984),

Groma & Bakó (1998) and Csikor & Groma (2004). The

peculiar properties of the distribution were not discussed,

however.

In the present paper, we perform a Monte Carlo study of

the strain distributions and the diffraction peak profiles from

different arrangements of dislocations, with the aim of

checking the Stokes–Wilson approximation and establishing

limits of its applicability. We show that the Stokes–Wilson

approximation provides a good description of the diffraction

profile as long as long-range order is absent. Then, we derive

analytically the probability density distribution for strain

caused by randomly placed straight dislocations, and compare

it with the Krivoglaz (1961) results for the distribution of

diffraction intensity. We find that, when the Krivoglaz–

Wilkens approximation is applicable, the Stokes–Wilson

approximation coincides with it. Since numerical calculation

of the strain probability distribution is orders of magnitude

faster than the direct calculation of the diffraction profile, the

Stokes–Wilson approximation is a very useful tool to study

diffraction from a broad class of dislocation distributions.

2. The Stokes–Wilson approximation

In kinematical approximation, the X-ray scattering intensity

from a distorted crystal can be written as a Fourier integral

IðqÞ ¼
R1
�1

GðxÞ expðiqxÞ dx ð1Þ

of the correlation function

GðxÞ ¼ exp iQ � Uðr1Þ �Uðr2Þ
� �� �� �

: ð2Þ

Equation (1) is written for powder diffraction and implies an

average over orientations of crystallites. The coordinate x is

along the reciprocal-lattice vector Q0. The correlations are

sought between two points r1 and r2 separated by a distance x

in the direction of Q0, and a small deviation q ¼ Q�Q0 of the

scattering vector Q from the reciprocal-lattice vector is also

taken along Q0. The displacement field UðrÞ is the total

displacement due to all defects in the crystal, and the angular

brackets . . .h i denote the statistical average over the distri-

bution of defects. By writing infinite limits in the integral (1),

we assume that the strain effect on the peak broadening

dominates over the finite size and finite resolution. The

account of these effects is discussed in the next section.

Our notation in equations (1) and (2) follows a standard

physical notation: we denote the spatial separation by x and

refer to the function GðxÞ as the correlation function. In

probability theory, the function GðxÞ can be formulated in

terms of the characteristic functional of the random strain field

(Rytov et al., 1988). In powder diffraction, the spatial coordi-

nate is usually denoted by L, while the function (2) is denoted

by AL þ iBL and called the Fourier transform of X-ray

intensity (Warren, 1959, 1969; Leineweber & Mittemeijer,

2010). In crystallography, this function is referred to as the

Patterson function.

Stokes & Wilson (1944) assume that only correlations

between closely spaced points r1 and r2 play a role. Then, the

difference of displacements can be approximated by the first

term in the Taylor series,

Q � Uðr1Þ �Uðr2Þ
� �

’ QEx; ð3Þ
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where E is the component of the strain tensor êe in the direction

of the scattering vector, E ¼ Q � êe �Q=Q2, and does not

depend on x.

When dislocation strain is considered, the proper choice of

the strain tensor needs to be discussed. Formally speaking, the

gradient of the displacement field UðrÞ is the total strain tensor

which is the sum of the elastic strain and the intrinsic strain

(also called self-strain or eigenstrain). The latter quantity

describes the insertion or removal of an extra half-plane when

the dislocation is introduced in the crystal. The intrinsic strain

is a singularity at the cut corresponding to the discontinuity of

the displacement by the Burgers vector (Landau & Lifshitz,

1970). A Burgers vector is a crystal lattice vector, and the

scattering vector Q is close to a reciprocal-lattice vector Q0. If

a small difference between Q and Q0 is neglected here, the

discontinuity of the phase factor Q ��U at the cut is a

multiple of 2�. Then, the intrinsic strain does not contribute to

diffraction and the strain in equation (3) is the elastic strain.

Upadhyay et al. (2014) demonstrated numerically that the

calculation of the peak profile by using the difference of

displacements in equation (2) and the calculation using the

spatially integrated elastic strain [see equation (53) below]

give the same result.

All studies that we are aware of do not distinguish between

Q and Q0 in equation (2), and we also follow that line. A small

additional phase factor which is neglected in such considera-

tion is sensitive to the process of plastic deformation during

the introduction of dislocations in the crystal. An investigation

of its role, and the possibility of revealing the sample rheology

by X-ray diffraction, requires a separate study that is beyond

the scope of the present work.

By using equation (3), the statistical average in equation (2)

can be written as

GðxÞ ’
R1
�1

PðEÞ expðiQExÞ dE: ð4Þ

Here PðEÞ is the probability density distribution of the elastic

strain E. Although the approximation [equation (3)] is written

for small x, we substitute equation (4) into equation (1) and

perform the integration over x in the infinite limits, which

gives

IðqÞ ’ 2�
R1
�1

PðEÞ�ðqþQEÞ dE; ð5Þ

where �ðqÞ is Dirac’s delta function. Then, the X-ray diffrac-

tion profile is given by

IðqÞ ’ 2�Pð�q=QÞ; ð6Þ

which is the prominent result by Stokes & Wilson (1944). In

the next section, we study the applicability of this approx-

imation by Monte Carlo simulations.

3. Monte Carlo study of the strain distributions

3.1. Homogeneous dislocation distributions and short-range
order

Our intention now is to calculate the probability density

distributions for several representative models of the dislo-

cation arrangements. Recently, we have calculated diffraction

profiles for various models of dislocation ensembles by

performing the statistical average in equation (2) by a Monte

Carlo method (Kaganer & Sabelfeld, 2010). Now we calculate

the probability densities for the same dislocation arrange-

ments using the same Monte Carlo method, and compare the

exact calculation of the X-ray intensity by equations (1) and

(2) with the Stokes–Wilson approximation [equation (6)].

In brief, the Monte Carlo calculation is performed as

follows. Dislocations are generated at random according to the

model of their distribution. The total displacements Uðr1Þ and

Uðr2Þ are calculated, due to linear elasticity, as sums of

displacements from individual dislocations, for a predefined

set of distances fxjg between points r1 and r2. The statistical

average [equation (2)] is obtained by repeating the generation

of dislocations. Similarly, the strain probability density is

constructed as a histogram for the same dislocation config-

urations, using explicit expressions for the dislocation strain.

The spatial integration [equation (1)] is performed by

standard quadratures. This integration strongly depends on

the behaviour of the correlation function GðxÞ at large x.

Krivoglaz (1961) classified crystal lattice defects in two classes,

depending on the behaviour of the correlation function GðxÞ

in the limit x!1. For defects of the first class, the limit is a

non-zero constant. It results in a delta function �ðqÞ in the

intensity distribution, corresponding to a coherent Bragg

peak. Uncorrelated dislocations belong to the second class,

with a zero limit of GðxÞ on x!1, and the coherent Bragg

peak is absent. However, the correlations between disloca-

tions in the models considered below give rise to a non-zero

limit and the coherent Bragg peak.

The distinction of the coherent and diffuse intensities is

sometimes very helpful, but not necessary in the analysis of

X-ray intensities. For numerical calculations, particularly in a

Monte Carlo study, it is convenient to take into account the

finite resolution of an experiment and evaluate both compo-

nents of the intensity together, in exactly the same way as it

happens in the experiment (Kaganer et al., 1997; Kaganer &

Sabelfeld, 2009, 2010). This is achieved by introducing a

resolution functionRðqÞ, so that the intensity is a convolution

of IðqÞ given by equation (1) withRðqÞ. Since the convolution

in reciprocal space is equivalent, due to the convolution

theorem, to a product in real space, the integral (1) can be

rewritten as

IðqÞ ¼
R1
�1

GðxÞRðxÞ expðiqxÞ dx: ð7Þ

The coherence function RðxÞ is the Fourier transform of the

resolution function RðqÞ. The characteristic width of RðxÞ is

referred to as the coherence length. Equation (7) allows one to

avoid calculation of GðxÞ on distances much larger than the
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coherence length. For small crystallites, their sizes, rather than

the coherence length, limit the integration in equation (7). In

that case, the function RðxÞ has a meaning of the crystallite size

in the direction of the scattering vector. In the calculations

below, we take a Gaussian function RðxÞ and choose its width

to reveal both components of the diffraction profile. In this

sense, we model an experiment performed with a sufficiently

good resolution.

Fig. 1(a) shows an example of the dislocation distribution

for the model of dislocation distribution that we have

proposed recently (Kaganer & Sabelfeld, 2010). In this model,

the screening of the long-range strain fields of dislocations is

achieved by generating pairs of dislocations with opposite

Burgers vectors. The position of the centre of a pair, the

orientation of the vector connecting two dislocations in a pair,

and the distance between two dislocations in a pair are

random. The diffraction profiles in Figs. 1(b), 1(c) are calcu-

lated for the exponential distribution of the distances between

dislocations in the pairs. The mean distance between disloca-

tions in the pairs is the screening radius Rc. We use the mean

distance between dislocations rd ¼ n�1=2, where n is the

dislocation density, as unit length. Then, the screening distance

Rc coincides with the Wilkens’ parameter M ¼ Rc=rd

(Wilkens, 1970a). As long as Rc � 1, the pairs overlap, rather

than form dipoles. The dislocation distribution shown in Fig.

1(a) is generated for Rc ¼ 1. Even in this case of rather little

overlap of the pairs, one cannot distinguish separate pairs in

the distribution.

The diffraction profiles calculated by the Monte Carlo

method using equations (1) and (2) have been presented in

our previous publication (Kaganer & Sabelfeld, 2010). They

are shown in Figs. 1(b), 1(c) by thick grey lines. The two plots

show the same diffraction profiles in logarithmic and linear

scale, respectively. The probability density distributions of

strain are calculated by the Monte Carlo method for the same

model of dislocation distribution and presented in Figs. 1(b),

1(c) by thin red lines. We note here that each pair of curves is

plotted without introducing an arbitrary scale factor that

would bring the curves to the same scale: the factor 2� from

equation (6) is used. A good agreement between exact

calculation and the Stokes–Wilson approximation for Rc � 1

is evident.

Figs. 1(d)–1( f) present Monte Carlo calculations of the

diffraction profiles for the Wilkens’ restrictedly random

dislocation distribution, also taken from our previous publi-

cation cited above. In this model, the crystal is divided into

cells (shown in Fig. 1d by thin grey lines), each cell containing

randomly distributed dislocations. The total number of dislo-

cations in each cell is the same, and the numbers of disloca-

tions with opposite Burgers vectors are equal in each cell. We

found that, in the case of one pair of dislocations per cell, our

previous calculation (Kaganer & Sabelfeld, 2010) did not

perform a sufficient average, so that Figs. 1(e), 1( f) present an

improved calculation. In the same way as above, the full

Monte Carlo calculation by equations (1) and (2) is shown by

thick grey lines, while the strain density distribution is

presented by thin red lines. In the case of one pair of dislo-

cations per cell, the exact calculation shows a resolution-

limited central peak, which is absent in the strain distribution.

This peak is studied further in the next sections. With the

increasing number of dislocation pairs per cell, the agreement

between the calculated peak profiles and the Stokes–Wilson

approximation improves.

Figs. 2(a), 2(c) present an example of the dislocation

arrangement and the diffraction profiles

for edge dislocations, also taken from

Kaganer & Sabelfeld (2010). The dislo-

cation pairs are purposely ‘polarized’, in

terms of Groma et al. (1988), Ungár et

al. (1989) and Groma & Monnet (2002).

One can see in Fig. 2(a) that all dislo-

cation pairs are of vacancy type,

meaning that a segment of the half-

plane is taken out between two dislo-

cations in a pair. As a result, the peak

profiles are asymmetric. As the mean

distance between dislocations in the

pair increases, the peak shifts in

the negative direction of q. The peak

profiles obtained in our previous Monte

Carlo calculation (thick grey lines) are

in good agreement also with the strain

probability distribution in this case. The

asymmetry and the shift of the peaks are

reproduced by the Stokes–Wilson

approximation.

With the aim of testing the Stokes–

Wilson approximation on a spatially

inhomogeneous system, we consider
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Figure 1
Dislocation arrangements (left) and diffraction profiles in logarithmic (middle) and linear (right)
scales for (a)–(c) randomly distributed pairs of screw dislocations and (d)–(f) Wilkens’ restrictedly
random dislocation distribution. Both diffraction peak profiles (thick grey lines) and strain
probability distributions (thin red lines) are calculated by the Monte Carlo method.



diffraction peaks from the misfit dislocations at the interface

between a substrate and an epitaxic film with the lattice

spacing different from that of the substrate. The results of our

Monte Carlo study (Kaganer & Sabelfeld, 2009) are presented

in Figs. 2(b), 2(d). Since the misfit dislocations are located in

the plane of the interface, their density �m is the number of

dislocations per unit length along the line perpendicular to the

dislocation lines, i.e. it is a linear density. That contrasts with

the bulk dislocation density, which is the areal density. The

dimensionless parameter characterizing diffraction peaks is

the product �md, where d is the film thickness.

The epitaxic films are studied in a triple-crystal diffraction

setup with an analyser crystal. Equation (1) presumes the

powder average and is not applicable in this case. Rather, the

intensity distribution is written as (Kaganer et al., 1997):

Iðqx; qzÞ ¼
R1
�1

dx
Rd
0

Rd
0

dz1 dz2Gðx; z1; z2Þ

� exp iqxxþ iqzðz1 � z2Þ
� �

; ð8Þ

where the x axis is in the plane of the interface and the z axis is

normal to it, and the points r1 and r2 in equation (2) are

separated by the distance x in the plane of the interface. Since

the system is not translationally invariant in the direction of

the film normal, the z coordinates of these two points enter

equation (8) separately. Equation (3) has to be modified by

expanding over small distances x and � ¼ z1 � z2. We restrict

ourselves to the symmetric Bragg reflections (diffraction

vector Q is directed along the z axis). Then, Q �U ¼ QUz

and two components of distortions, Ezx ¼ @Uz=@x and

Ezz ¼ @Uz=@z, have to be taken into consideration. They

depend on the coordinate z ¼ ðz1 þ z2Þ=2 in the film, since a

translational invariance in this direction is absent. Then,

instead of equation (3), we have

Q � Uðr1Þ �Uðr2Þ
� �

’ QEzxðzÞxþQEzzðzÞ�; ð9Þ

and the Stokes–Wilson approximation is

Iðqx; qzÞ ’ ð2�Þ
2
Rd
0

Pzxð�qx=Q; zÞPzzð�qz=Q; zÞ dz; ð10Þ

where PzxðEzx; zÞ is the probability distribution of the distor-

tion component Ezx at a distance z from the surface

ð0< z< dÞ. The probability distribution Pzz is defined simi-

larly. The integration is performed over the film thickness.

Fig. 2(d) compares the results of the Monte Carlo calcula-

tion of the diffraction profiles for uncorrelated misfit dislo-

cations performed by Kaganer & Sabelfeld (2009) (thick grey

lines) with the Monte Carlo calculation by equation (10) for

the same dislocation distributions (thin red lines). Different

curves correspond to different densities of misfit dislocations.

A good agreement between the exact calculation and the

Stokes–Wilson approximation is also reached in this case of

spatially inhomogeneous dislocation distribution.

3.2. Inhomogeneous dislocation distributions and long-range
order

The results presented in Figs. 1 and 2 demonstrate that the

Stokes–Wilson approximation is applicable for different

models of dislocation distributions and in a wide range of

parameters. Our aim now is to establish the limits of its

applicability. For this purpose, we modify the models discussed

above to bring them in parameter ranges where the Stokes–

Wilson approximation no longer agrees with the calculated

peak profiles.

In Fig. 3, the model of the strain field screening by arranging

dislocations in pairs (see Fig. 1a) is investigated for smaller

mean distances Rc between dislocations in the pairs. Fig. 3(a)

presents an example of the distribution of pairs of screw

dislocations with opposite Burgers vectors, with the mean

distance between dislocation in pairs Rc ¼ 0:25 (we remind

readers that the distances are measured in units of the mean

distance between all dislocations in the system). In this case,

the dislocation dipoles can be recognized in the distribution.

For Rc < 1, the diffraction profiles in Figs. 3(b), 3(c) possess

sharp Bragg peaks in the centre of the diffraction profile. This

central peak is a manifestation of the long-range order. The

resolution function is shown by the dashed line, demonstrating

that the peak is resolution limited. The Stokes–Wilson

approximation, which assumes only short-range correlations,

obviously cannot catch this peak.

The behaviour of GðxÞ at large x can be established by

considering the limit x!1 in equation (2). Since displace-

ments in two points r1 and r2 are not correlated in the limit of

large separations, we have
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Figure 2
Dislocation arrangements (top) and diffraction profiles (bottom) for (a),
(c) randomly distributed pairs of edge dislocations and (b), (d)
uncorrelated misfit dislocations at the film–substrate interface. Both
diffraction peak profiles (thick grey lines) and strain probability
distributions (thin red lines) are calculated by the Monte Carlo method.



Gðx!1Þ ¼ exp½iQ �UðrÞ�
� �2

: ð11Þ

This is the static Debye–Waller factor which determines

the coherent Bragg intensity in equation (1) IcohðqÞ ¼

2� expð�2WÞ�ðqÞ, where it is denoted

expð�WÞ ¼ exp½iQ �UðrÞ�
� �

: ð12Þ

Since we do not consider the thermal Debye–Waller factor in

the present paper, we refer below to the static Debye–Waller

factor as simply the Debye–Waller factor. The inset in Fig. 3(b)

presents the Debye–Waller factors calculated by the Monte

Carlo method.

Formally, the arrangement of dislocations in pairs and the

screening of the long-range strain field of a dislocation by

surrounding dislocations results in a finite Debye–Waller

factor for any screening radius Rc. However, the Debye–

Waller factor quickly decreases with the increasing Rc and the

coherent peak is not practically visible. To observe it, one

would need an unreasonably high resolution (and a large

crystal size). Figs. 3(b), 3(c) show that the coherent peak is not

visible and the Stokes–Wilson approximation is applicable

when the Debye–Waller factor expð�2WÞ< 10�3.

Since the Debye–Waller factor quickly decreases with the

reflection order, the Stokes–Wilson approximation can be

applicable for the higher-order reflections, even if it fails to

describe the low-order ones. The calculations presented in

Figs. 3(b), 3(c) are performed for the first reflection order,

gb ¼ 1 (here it is denoted gb ¼ Q � b=2�). In Figs. 3(d), 3(e),

we study the case of dislocation dipoles with Rc ¼ 0:25, now in

different reflection orders. A comparison of the Monte Carlo

calculation of the diffraction profiles (thick grey lines) with the

probability distribution for the dislocation strain (thin red

lines) shows that the accuracy of the Stokes–Wilson approx-

imation increases with the increasing reflection order. We note

that, according to equation (6), one and the same probability

distribution, but with the abscissa scaled by gb, is used for all

curves. From the Debye–Waller factors presented in the inset

to Fig. 3(d), we arrive at the same conclusion, that the Stokes–

Wilson approximation can be used when the Debye–Waller

factor expð�2WÞ< 10�3.

A small Debye–Waller factor does not mean that the X-ray

intensity is small: it only indicates that the coherent peak is

weak and the intensity is transferred to the diffuse peak. These

diffuse peaks are the Bragg peaks observed experimentally for

crystals with dislocations (Krivoglaz, 1996). In the framework

of kinematical theory and in the absence of absorption, the

total integrated intensity is preserved and only redistributes

(see further discussion in x4.6).

Our next model is a modification of the Wilkens’ restrict-

edly random dislocation distribution. In the dislocation

distribution shown in Fig. 4(a), the sample is divided in cells of

equal area, the cells are seeded with randomly placed dislo-

cations and the total Burgers vector in each cell is zero.

However, in contrast with the Wilkens’ distribution, only a

fraction f < 1 of the cells is filled, while other cells remain

empty. Fig. 4(a) shows an example of the dislocation distri-

bution when a fraction f ¼ 0:25 of the cells is filled. With

decreasing f, the distribution becomes less homogeneous.

Accordingly, the Debye–Waller factor increases, the correla-

tion function GðxÞ in Fig. 4(b) tends to a larger limiting value
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Figure 3
(a) An example of an arrangement of the randomly placed and randomly oriented dipoles of screw dislocations (Rc ¼ 0:25), (b), (c) diffraction peak
profiles calculated for dislocation distributions with different screening distances Rc and (d), (e) diffraction peak profiles in different reflection orders.
Monte Carlo calculation of the diffraction profiles is shown by thick grey lines, and the strain probability distributions by thin red lines. The middle and
the right columns present the same peaks on different scales. The insets in (b) and (d) show calculated Debye–Waller factors expðiQ �UÞ

� �2
. Dashed lines

in (c), (e) show the resolution function.



at x!1, and the diffraction profiles in Figs. 4(c), 4(d)

acquire sharp coherent peaks at q ¼ 0. The resolution func-

tion shown in Fig. 4(d) by the dashed line demonstrates that

this peak is resolution limited. A comparison of the Monte

Carlo calculation of the diffraction peaks (thick grey lines)

with the strain probability density distribution (thin red lines)

shows that the accuracy of the Stokes–Wilson approximation

increases as the Debye–Waller factor decreases below 10�3.

Fig. 5 demonstrates the effect of the increasing ordering in

the distribution of misfit dislocations. The dislocations are

generated as a Markov chain with the probability density of

the distances between subsequent dislocations given by a

gamma distribution (Kaganer & Sabelfeld, 2009). The use of a

gamma distribution, with its only parameter � controlling the

order, allows one to proceed from completely random dislo-

cations at � ¼ 1 (exponential distribution) to almost periodic

dislocations at � � 1. Fig. 5(a) shows examples of dislocation

distributions with different degrees of order. Thick grey lines

in Fig. 5(b) are the corresponding diffraction profiles. As the

positional order of dislocations is improved, the satellite

reflections appear and become sharper with increasing �.

Calculation in the Stokes–Wilson approximation by equation

(10) is shown by thin red lines and agrees with the diffraction

profiles as long as the coherent Bragg peak is absent.

4. Strain distributions and peak profiles from random
dislocations

4.1. The central limit theorem

Thin red lines in Figs. 1–4 show the probability density

distributions of elastic strain due to various dislocation

arrangements, obtained by Monte Carlo calculations. They are

far from a Gaussian shape suggested by the Warren & Aver-

bach (1950, 1952) approximation. The central parts of the

distributions have a Gaussian shape, but their tails follow the

q�3 power law. Such distributions are exactly what is expected

when a sum of a large, but finite, number of independent

random variables is considered (Sornette, 2006).

The central limit theorem states that the probability density

distribution of a sum of a large number of independent

random variables converges to the Gaussian distribution.

Strain in a crystal with random dislocations is a sum of strains

due to individual dislocations and, due to a slow decay of

strain with distance, a large number of dislocations contribute

to strain in each point of a crystal. However, the applicability

conditions of the theorem have to be taken into consideration.

First, the dispersion of the variables is required to be finite.

As discussed below, this condition is satisfied when the

dislocation strain is screened, particularly in our model of

overlapping dislocation pairs, or in Wilkens’ restrictedly

random dislocation distribution. For random dislocation

distribution, the dispersion logarithmically diverges with the

system size. The logarithmic divergence puts the distribution

on the border between Gaussian and Levý distributions for
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Figure 5
(a) Examples of the misfit dislocation arrangements generated as Markov
chains with the gamma distribution for distances between dislocations.
(b) Diffraction peak profiles calculated for these dislocation distributions
(thick grey lines) and corresponding strain probability distributions (thin
red lines).

Figure 4
(a) An example of dislocation distribution in the rarefied Wilkens model. There are five dislocation pairs per cell, and a fraction f ¼ 0:25 of cells is filled.
(b) Correlation functions GðxÞ for different fractions f of filled cells. (c) Diffraction profiles calculated from these correlation functions (thick grey lines)
and the strain probability distributions (thin red lines). The inset shows calculated Debye–Waller factors expðiQ �UÞ

� �2
. (d) The central part of the

diffraction profiles in (c) shown in linear scale. The dashed line represents the resolution function.



which also an extended central limit theorem holds (Chavanis,

2009).

When the dislocation strain is screened and the dispersion is

finite, the central limit theorem states that the Gaussian

distribution is approached as the number of terms in the sum

giving comparable contributions tends to infinity. Since distant

dislocations are screened, it means that the Gaussian distri-

bution is approached when the dislocation density tends to

infinity. The convergence to the Gaussian distribution need

not necessarily be the same for different parts of the distri-

bution. For a large but finite dislocation density, the Gaussian

law is a good description of the central part of the distribution.

This central part is formed as a result of comparable contri-

butions of many dislocations to the total strain. In contrast, the

tails of the distribution arise due to a strong strain in the

vicinity of a single dislocation, while other dislocations provide

negligibly small contributions. Such convergence to the

Gaussian law with the increasing number of random variables,

fast in the centre of the distribution and slow at its tails, is

described by Sornette (2006) in detail. Below we derive the

probability density distribution for strain due to dislocations

and find that it follows these general laws. The distribution is

Gaussian in the central part and has the algebraic (with the

power �3) tails.

4.2. Strain distribution

The aim of the present section is to derive a general

expression for the probability density distribution analytically.

We follow the method developed for other systems with

random sources of fields (Holtsmark, 1919; Chandrasekhar,

1943; Chavanis & Sire, 2000; Chavanis, 2009).

Let us consider N parallel dislocations randomly placed in

a cylinder of radius R; the dislocation density is n ¼ N=�R2.

We consider both the limit N!1 in the Krivoglaz &

Ryaboshapka (1963) analysis of random dislocation distribu-

tion, and the case of finite N in the Wilkens (1970a,b, 1976)

model of restrictedly random distribution. We refer to dislo-

cations as strain sources, but the results remain valid for any

other randomly distributed defects. In particular, we consider

also random pairs of opposite dislocations in our model of

screening of the long-range strains due to surrounding dislo-

cations. Then, the strain field of a dislocation pair is used

instead of the strain due to a single dislocation. The only

assumption is the absence of correlations in positions of

defects under consideration.

The strain E is, due to linear elasticity, a sum of strains

produced by all dislocations,

E ¼
PN
i¼1

"i: ð13Þ

The probability density PðEÞ can be written as

PðEÞ ¼

Z
� E �

PN
i¼1

"i

� 	QN
i¼1

pðqiÞ dqi; ð14Þ

where qi are two-dimensional vectors in the plane perpendi-

cular to dislocation lines and pðqiÞ dqi is the probability of

occurrence of the ith dislocation at qi.

The delta function can be represented by its Fourier

transform,

�ðEÞ ¼
1

2�

Z1
�1

expð�iE�Þ d�: ð15Þ

Then, PðEÞ becomes

PðEÞ ¼
1

2�

Z1
�1

expð�iE�Þ ~PPð�Þ d�; ð16Þ

where ~PPð�Þ is equal to

~PPð�Þ ¼

ZR

qj j¼0

exp½i"ðqÞ��pðqÞ dq

0
B@

1
CA

N

: ð17Þ

Since dislocations are uniformly distributed, pðqÞ ¼ 1=�R2.

We also take into account that

1

�R2

ZR

qj j¼0

dq ¼ 1 ð18Þ

and rewrite equation (17) as

~PPð�Þ ¼ 1�
1

�R2

ZR

qj j¼0

1� exp½i"ðqÞ��
� �

dq

0
B@

1
CA

N

: ð19Þ

Let us define

Tð�Þ ¼ n

ZR

qj j¼0

1� exp½i"ðqÞ��
� �

dq ð20Þ

and rewrite equation (19) as

~PPð�Þ ¼ 1�
Tð�Þ

N


 �N

: ð21Þ

The convergence of the integral (20) as R!1 depends on

the screening of the dislocation strains at large distances. The

strain due to a single dislocation possesses a universal

dependence "ðqÞ / ��1 on the distance. Then, for uncorre-

lated dislocations, the integral (20) diverges at the upper limit

as ln R. This integral is explicitly calculated below in x4.4 for

screw dislocations. For our model of dislocation screening by

uncorrelated pairs of dislocations with opposite Burgers

vectors, equation (20) can be applied by taking the strain field

of a dislocation pair as "ðqÞ. At distances exceeding the

separation in the pair, the strain field of a pair is that of a

dislocation dipole, "ðqÞ / ��2, and the integral (20) converges

at large distances. Similarly, in the Wilkens’ restrictedly

random distribution, the strain from a cell containing equal

numbers of the dislocations with opposite Burgers vectors
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decays as "ðqÞ / ��2 on the distances exceeding the cell size,

and the integral (20) converges.

In the case of screened dislocations, Tð�Þ does not depend

on N in the limit N!1 and equation (21) gives

~PPð�Þ ¼ exp �Tð�Þ½ �: ð22Þ

For unscreened dislocations, equation (22) is not a true limit at

N!1 but remains valid as long as Tð�Þ 	 N. This latter

restriction is not important, however. The Fourier integral (16)

is governed by the behaviour of the function Tð�Þ in the range

Tð�Þ<
 1. When Tð�Þ becomes large, its contribution to ~PPð�Þ is

negligible, irrespective of the use of either equation (21) or

(22).

If several types of dislocations are present, a generalization

of equation (22) is straightforward. Since dislocations of

different types are not correlated to each other, the strain

probability is a product of probabilities due to different types

of dislocations. Then, equation (20) is replaced by a sum

Tð�Þ ¼
P
�

n�
RR

qj j¼0

1� exp½i"�ðqÞ��
� �

dq; ð23Þ

where � denotes the types of dislocations, and n� and "�ðqÞ are

the density and the strain field of dislocations of corre-

sponding type, respectively. In particular, if dislocations with

opposite Burgers vectors are present with equal densities,

equation (23) simplifies to

Tð�Þ ¼ n
RR

qj j¼0

1� cos "ðqÞ�½ �
� �

dq: ð24Þ

Equations (13)–(24) provide a general solution for strain

distribution from any defects, described by their strain "ðqÞ.
Before proceeding to further analysis specific to the disloca-

tion strain field, let us derive in the same way a general

expression for the X-ray intensity distribution.

4.3. Intensity distribution

The X-ray intensity distribution is given by equation (1) as

the Fourier transform of the correlation function GðxÞ. Let us

now perform, by the same method as used in the previous

section for the strain distribution, a direct statistical average of

the correlation function (2). We refer, as above, to dislocations

as random uncorrelated defects. However, the results are

applicable to any other random uncorrelated defects, parti-

cularly dislocation pairs in our model of the dislocation

screening. We consider N dislocations in a cylinder of radius R,

with the dislocation density n ¼ N=�R2. The total displace-

ment UðrÞ is, due to linear elasticity, a sum of displacements

due to individual dislocations,

UðrÞ ¼
PN
i¼1

uðr� qiÞ; ð25Þ

where the position of the ith dislocation is given by a two-

dimensional vector qi in the plane perpendicular to dislocation

lines.

The statistical average (2) can be written as

GðxÞ ¼

Z
exp i

PN
j¼1

Q � uðr1 � qjÞ �Q � uðr2 � qjÞ
� �( )

�
QN
j¼1

pðqjÞ dqj: ð26Þ

Since dislocations are uniformly distributed, pjðqÞ ¼ 1=�R2

and

GðxÞ ¼

1

�R2

ZR

qj j¼0

exp i Q � uðr1 � qÞ �Q � uðr2 � qÞ
� �� �

dq

0
B@

1
CA

N

: ð27Þ

Using equation (18), the latter formula can be written as

GðxÞ ¼ 1�
T ðxÞ

N


 �N

; ð28Þ

where

T ðxÞ ¼ n
RR

qj j¼0

1� exp i Q � uðr1 � qÞ �Q � uðr2 � qÞ
� �� �� 

dq:

ð29Þ

We remind readers that, because of the powder average, the

points r1 and r2 are separated by a distance x in the direction of

diffraction vector Q. In a general case, the function T ðr1; r2Þ

has to be considered. As long as T ðxÞ 	 N, equation (28) can

be written as

GðxÞ ¼ exp �T ðxÞ½ �: ð30Þ

Equations (29), (30) are the main general result for X-ray

intensity distribution from uncorrelated defects by Krivoglaz

(1961, 1996). We have derived these equations in a way that is

different from his original derivation.

As a first step in their calculation of the diffraction peak

profiles from crystals with dislocations, Krivoglaz &

Ryaboshapka (1963) find that the main contribution to the

integral (29) is due to distant dislocations, i.e. the distance

r1 � r2

�� �� between points r1 and r2 is small compared with the

distance q
�� �� between this pair of points and the dislocation

line. Then, they expand the difference of displacements in

equation (29) in a Taylor series,

Q � uðr1 � qÞ �Q � uðr2 � qÞ ’ Q � @u=@r � ðr1 � r2Þ; ð31Þ

where @u=@r denotes the distortion tensor with the compo-

nents @ui=@rj . The result coincides with equation (20). One can

see that the approximation (31) is the same as the approx-

imation (3) in the derivation of the Stokes & Wilson (1944)

approximation. Thus, for uncorrelated dislocations, the

Krivoglaz & Ryaboshapka (1963) calculation of the diffraction

profiles from crystals with dislocations involves the same

approximations as the Stokes & Wilson (1944) approximation

of the diffraction profile by strain distribution, and differs only

in the sequence of approximations. Further analysis in the next

section is equally applicable for both of them.
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4.4. Strain distribution for screw dislocations

4.4.1. Uncorrelated dislocations. Let us perform now a

detailed calculation for the renowned problem of screw

dislocations. We consider, as above, N dislocations in a

cylinder of radius R, with an equal number of dislocations with

opposite Burgers vectors. Thus, the results are applicable for a

random dislocation distribution by Krivoglaz & Ryaboshapka

(1963) in the limit N!1, and for a restrictedly random

dislocation distribution by Wilkens (1970a,b, 1976) if N and R

are kept finite. The strain field of a screw dislocation is

"ðqÞ ¼ b cos ’=2��, where the polar coordinates ð�; ’Þ are

used for the two-dimensional vector q. The integral (24)

becomes

Tð�Þ ¼ n
RR
0

� d�
R2�
0

d’ 1� cos b� cos ’=2��½ �
� �

: ð32Þ

Let us introduce a new variable y ¼ b�=2�� and make use of

the equality

R2�
0

cosðy cos ’Þ d’ ¼ 2�J0ðyÞ; ð33Þ

where J0ðyÞ is the Bessel function. Then, equation (32)

transforms to

Tð�Þ ¼
nb2�2

2�

Z1
b�=2�R

1� J0ðyÞ
� � dy

y3
: ð34Þ

Let us define

	 ¼ b�=2�R ð35Þ

and introduce a function

f ð	Þ ¼ 4

Z1
	

1� J0ðyÞ
� � dy

y3
: ð36Þ

For 		 1, the main contribution to the integral (36) is from

the region of small y. Using the expansion J0ðyÞ ’ 1� y2=4,

we find f ð	Þ ’ � ln 	. In the opposite limit 	� 1, the Bessel

function in the integrand can be neglected compared to 1,

which gives f ð	Þ ’ 2=	2. Since equation (34) can be written as

Tð�Þ ¼
1

2
N	2f ð	Þ; ð37Þ

we find that the condition Tð�Þ 	 N, which is required to

proceed from equation (20) to equation (22), is satisfied for

	 <
 1. However, as discussed in x4.2, the contribution from

large 	 is exponentially small anyway. The use of equation (37)

in the whole range of 	 allows a smooth calculation of the

Fourier integral (16).

Fig. 6 compares the function f ð	Þ given by equation (36)

with the respective bulky formula proposed by Wilkens

(1970b). Both functions have the same f ð	Þ ’ � ln 	 beha-

viour at 		 1. Krivoglaz & Ryaboshapka (1963) arrived at

equation (37) in another way, by expanding the cosine term in

equation (24) for small arguments. From an estimate of the

remaining terms, they concluded that the applicability of the

approximation f ð	Þ ’ � ln 	 is limited by the condition

ln N � 1.

The dashed line in Fig. 6 shows a function � ln 	þ 1. It is a

good approximation of the function f ð	Þ in the whole range

	 <
 1. Thus, the applicability condition by Krivoglaz &

Ryaboshapka (1963) is formally correct, since the correction

to � ln 	 is of the order of 1. However, the correction is

constant, so that the function can be represented as � lnð	=eÞ,

where e is the base of the natural logarithm. By comparing

with the definition of 	 in equation (35), one can see that the

approximation f ð	Þ ’ � ln 	 can be preserved by using eR

instead of R. In an analysis of experimental data, the screening

radius R is not known in advance and considered as a fit

parameter. A difference between R and eR cannot be

revealed. In the Monte Carlo simulations, the correlation

radius Rc taken on input and the cutoff radius R, obtained by

the fit of the diffraction profile, do not coincide (Kaganer &

Sabelfeld, 2010). The latter depends also on the distribution of

dislocations modelled in the Monte Carlo calculation. We note

that e as a correction factor appears for screw dislocations and

for a particular model of their distribution. Other dislocation

distributions give rise to other numerical values of the

correction constant.

Thus, the approximation f ð	Þ ’ � ln 	 makes sense in

the whole range 	 <
 1, with an appropriate correction of the

radius R. However, the use of this approximation in the

Fourier integration (16) gives rise to unphysical oscillations

caused by a rigid cut of the integration range. An advantage of

the Wilkens’ function f ð	Þ, or the one given by equation (36),

is the possibility of smoothly extending the Fourier integration

over � to infinite limits. We also plot in Fig. 6 the function

f ð	Þ ¼ � ln½	=ð	þ eÞ�, which has the same behaviour at 		 1

and was suggested by Kaganer et al. (2005) with a pragmatic

purpose of providing a smooth calculation of the Fourier

integral in infinite limits. Any of these functions can equally

well be used in the diffraction profile calculations.

4.4.2. Pairs of dislocations. Consider now the model of

randomly positioned pairs of dislocations with opposite

Burgers vectors. The distance between dislocations in the pairs

Rc is a screening distance. Here we take, for simplicity, the

same distance Rc for all pairs. This unimodal distribution is
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Figure 6
The function f ð	Þ for different models of dislocation distributions.



one of the distributions considered by Kaganer & Sabelfeld

(2010), and it has been shown that the results for different

distributions of Rc are very similar. A generalization of the

equations below to any other distribution of Rc is straight-

forward and requires an additional integration over the

distribution.

The strain field of a screw dislocation located at the origin is

b

2�Rc

y

x2 þ y2
; ð38Þ

where we use dimensionless Cartesian coordinates

q=Rc ¼ ðx; yÞ. Then, the strain field of a pair of dislocations

with opposite Burgers vectors, separated by the distance Rc, is

"ðqÞ ¼
b

2�Rc

Fðx; yÞ; ð39Þ

with the definition

Fðx; yÞ ¼
y

x� 1
2

� 2
þy2
�

y

xþ 1
2

� 2
þy2

" #
ð40Þ

and x axis chosen along the line connecting two dislocations in

the pair.

As discussed above, equation (24) for dislocation pairs can

be written in infinite limits. Substituting strain [equation (40)],

we can represent this equation as

Tð�Þ ¼
1

2
Nc	

2f ð	Þ; ð41Þ

with the definition

f ð	Þ ¼
1

�	2

Z1
�1

Z1
�1

1� cos 	Fðx; yÞ½ �
� �

dx dy ð42Þ

and Nc ¼ �R2
cn is the average number of dislocations in a

cylinder of radius Rc. When using equation (24), we take into

account that the density of dislocation pairs is n=2.

The function f ð	Þ given by equation (42) is also shown in

Fig. 6. It possesses the same behaviour as other functions on

this plot and differs only by the constant that has to be used for

correction of the � ln 	 function. The use of another correc-

tion constant again stresses that this constant is not universal.

In all other respects, all functions shown in Fig. 6 can be used

for analysis of experiments equally well. For this reason, we do

not distinguish between these functions, denoting all of them

by f ð	Þ.

4.5. Shape of diffraction peaks

We have found above that, for random straight dislocations,

the intensity distribution in the Krivoglaz–Wilkens approx-

imation coincides with the strain density distribution. To be

explicit, on substitution � ¼ �Qx the correlation function

GðxÞ in the Krivoglaz–Wilkens approximation is identical with

the function ~PPð�Þ. Let us use more common terms of the

intensity distribution to describe both distributions. This

intensity distribution was analysed in many works, and we

recollect here its main features. We collect equations (6), (16),

(22), (37), and represent the correlation function (2) in the

form

GðxÞ ¼ exp �TðxÞ½ �; ð43Þ

where

TðxÞ ¼
�

2
nðgbÞ

2
x2f ðgbx=2�RÞ: ð44Þ

The numerical factor �=2 in equation (44) is for screw dislo-

cations. In a general case, this factor, which is also called ‘the

contrast factor’, is a well defined quantity whose proper value

is needed for accurate dislocation density determination. It

was calculated for different crystal symmetries, anisotropies

and dislocation arrangements in a number of papers. We refer

to the most recent publication (Martinez-Garcia et al., 2009)

that also reviews previous works.

The central part of the diffraction peak is Gaussian, since

at small q a weak x-dependence of the logarithmic term

f ðgbx=2�RÞ ’ lnð2�R=gbxÞ does not play a role. In the loga-

rithmic term, one can substitute x ¼ n�1=2=gb. Then, the

logarithmic term is equal to 1
2 lnð4�NÞ, where N ¼ �R2n is the

number of dislocations within the correlation radius. This

radius is a crystal size in the Krivoglaz treatment, the size of

the cells in the Wilkens model, or the mean separation of

dislocations in the pairs in our model of the dislocation

screening. Thus, the central part of the peak is a Gaussian,

IðqÞ ¼
4

nðgbÞ
2 lnð4�NÞ


 �1=2

exp �
q2

�nðgbÞ
2 lnð4�NÞ


 �
: ð45Þ

The intensity distribution at q which is large compared to

the half-width of the Gaussian is governed by the behaviour

of GðxÞ at small x. For small x, one has TðxÞ 	 1 and hence

exp �TðxÞ½ � ’ 1� TðxÞ. Comparing with equation (21) at

N ¼ 1, we find that IðqÞ at large q is the strain density

distribution in a cylinder containing a single dislocation. This

strain distribution can be calculated directly (Wilson, 1955).

When the sum of strains [equation (13)] is dominated by

one term, the correlation function is

GðxÞ ¼ N
RR

qj j¼0

exp iQ"ðqÞx½ �pðqÞ dq: ð46Þ

Substituting into equation (1) and integrating over x first, we

get

IðqÞ ¼ 2�n
RR

qj j¼0

� qþQ"ðqÞ½ � dq: ð47Þ

For the strain field of a screw dislocation, we have

Q"ðqÞ ¼ gb cos ’=� and integration of the delta function gives

IðqÞ ¼ 2�2 nðgbÞ
2

q3
: ð48Þ

The q�3 asymptotic law at large q is well established (Wilson,

1955; Wilkens, 1963, 1970a; Groma & Bakó, 1998; Groma,

1998; Kaganer et al., 2005).

Thus, both the strain probability distribution and the

diffraction profile have a Gaussian central part and an alge-
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braic tail. The Gaussian part is due to small strains from a

large number of dislocations, while the algebraic tail is due to

the vicinity of a single dislocation. The transition region

between these parts is determined by equating the corre-

sponding expressions (45) and (48).

4.6. Debye–Waller factor

As we have already discussed in x3.2 above, a non-zero limit

of the correlation function Gðx!1Þ is a manifestation of

the long-range order which gives rise to a coherent Bragg

peak. This peak is a delta function �ðqÞ in an infinite crystal

illuminated by a plane wave, or a sharp peak with the width

determined by either the crystal size or the X-ray coherence in

a realistic case. Let us compare the total integrated intensity of

the diffraction peak

Jtot ¼
R1
�1

IðqÞ dq ð49Þ

with that of its coherent part Jcoh. Substituting equation (2)

into equation (1), we get Jtot ¼ 2�Gðx ¼ 0Þ. In the same

way, the integrated intensity of the coherent peak is Jcoh ¼

2�Gðx!1Þ. Since Gðx ¼ 0Þ ¼ 1 and, according to equation

(11), Gðx!1Þ ¼ expð�2WÞ, we have

Jcoh=Jtot ¼ expð�2WÞ: ð50Þ

It may be worth noting here that, in the framework of the

kinematical theory and in the absence of the X-ray absorption,

the integrated intensity (49) does not depend on the disloca-

tion density or dislocation correlations. An increase of the

dislocation density or, more generally, an increase of disorder

causes a redistribution of the X-ray intensity from the

coherent peak to the diffuse peak. The Debye–Waller factor

becomes small and the coherent peak is not seen, unless the

resolution is extremely high. In this respect, Bragg peaks

observed from crystals with dislocations are diffuse peaks

(Krivoglaz, 1996).

A statistical average in equation (12) is performed in the

same way as it is done above for the strain distribution, and

gives

W ¼ n
RR

qj j¼0

1� cos Q � uðqÞ½ �
� �

dq: ð51Þ

For uncorrelated screw dislocations, one has Q � uðqÞ ¼ gb’,

where ’ ¼ arctanðy=xÞ is the polar angle. The cosine term in

equation (51) is zero after the angular integration over ’, and

the Debye–Waller exponent is W ¼ �R2n ¼ N. In the limit

N!1, the intensity of the coherent peak is zero. For the

restrictedly random dislocation distribution, the number N of

the dislocations in a cell is finite, and formally the coherent

peak is present. However, since its intensity is proportional to

expð�2NÞ, this peak can be revealed only for small N. This is

demonstrated in Fig. 1( f), where the central resolution limited

peak is visible only in the top curves. Note that the number of

dislocation pairs indicated in the figure is N=2, half of the

number of dislocations.

For our model of dislocation pairs, the displacement uðqÞ in

equation (51) is that of a pair of dislocations with opposite

Burgers vectors. At distances much larger than the separation

between dislocations in the pair Rc, a Taylor series expansion

gives Q � uðqÞ ’ QRc"ðqÞ, where "ðqÞ is the strain due to a

single dislocation. Then, the calculation is the same as in x4.4.1

and the Debye–Waller exponent W is equal to Tð�Þ in equa-

tions (32)–(37) with � ¼ QRc, and hence 	 ¼ gbRc=R. For the

system size that is large compared to the dislocation distances

in the pairs, R� Rc, the Debye–Waller exponent can be

written, using equation (37), as

W ¼
�

2
ðgbÞ

2
nR2

c ln R=gbRcð Þ: ð52Þ

It logarithmically diverges with the system size. Then, the

Debye–Waller factor algebraically depends on the system size,

expð�2WÞ / R�
, where 
 ¼ �ðgbÞ
2
nR2

c. Hence, the Debye–

Waller factors calculated by the Monte Carlo method and

plotted in the insets of Figs. 3(b), 3(c) are not fully correct.

They are calculated for system sizes several hundred times

larger than the mean distance between dislocations, and their

size dependence was not studied. Equation (52) shows that the

Debye–Waller factor quickly decreases as either the screening

distance Rc or the reflection order increases. Hence, in

accordance with the Monte Carlo calculations in x3, the

coherent Bragg peak can be revealed only for small screening

distances and in low-order reflections. The Stokes–Wilson

approximation becomes applicable for higher-order reflec-

tions, even if it is not applicable for low orders.

4.7. Probability density of the spatially averaged strain

The statistical average in equation (2) is performed over the

probability density distributions of the difference of displa-

cements Uðr1Þ �Uðr2Þ for all distances x between points

r1 � r2. Instead of the approximate equation (3) valid only for

small x, one can write an equality

Q � Uðr1Þ �Uðr2Þ
� �

¼ QExx; ð53Þ

thus introducing the spatially averaged strain

Ex ¼
1

x

Zx

0

E dx: ð54Þ

Here the bar denotes the spatial average, so that Ex is a

random quantity representing the average over a distance x of

the strain E due to randomly placed dislocations. This quantity

is widely discussed in the literature (McKeehan & Warren,

1953; Warren, 1959, 1969; Leineweber & Mittemeijer, 2010;

Balogh et al., 2012; Upadhyay et al., 2014).

Let us denote by PxðExÞ its probability density. Then,

equation (2) can be written as

GðxÞ ¼
R1
�1

expðiQ�xÞPxð�Þ d�: ð55Þ

As we have already discussed in x2, the strain E in equation (3)

is the elastic strain. Accordingly, equations (53) and (54) treat

the dislocation displacement field as a continuous multi-
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valued function, rather than a single-valued function posses-

sing a discontinuity. The two representations of the dislocation

displacement field lead to the same result when the expo-

nential function in equation (2) is used, but to different results

when equations (53), (54) are employed. The displacement

field of a straight dislocation contains a term with arctanðy=xÞ,

which provides the displacement by Burgers vector when

making a closed contour around the dislocation line. In the

Monte Carlo calculations presented below, we use the Fortran

function atan2ðy; xÞ in the integration along the x direction.

This function has a discontinuity at the negative x axis which

is not crossed. The use of a formally equivalent function

�atan2ðx; yÞ gives the wrong result, since the discontinuity of

this latter function on the y axis is crossed in the integration

along x.

Fig. 7 presents Monte Carlo calculations of the probability

density distributions PxðExÞ for different distances x. They are

calculated in the same manner as PðEÞ, but as histograms of

Q � ½Uðr1Þ �Uðr2Þ�=x. The dislocation distributions are the

ones presented in Figs. 1(a) and 3(a): pairs of screw disloca-

tions with opposite Burgers vectors have random uncorrelated

positions and orientations, the distance between dislocations

in the pairs follows the exponential distribution with the mean

distance between dislocations in the pairs Rc. Fig. 7 shows the

probability distributions for the case of strongly overlapping

pairs, with the mean distance Rc ¼ 5 larger than the mean

distance between dislocations in the system (taken as the

length unit). One and the same curves are shown in the figure

in three different scales, to reveal different parts of the

distributions. The strain is presented in the units of

E0 ¼ bn1=2=2�: ð56Þ

As a numerical example, for a Burgers vector b = 0.3 nm and a

mean distance between dislocations n�1=2 = 100 nm, one has

E0 ’ 5� 10�4.

The probability density distribution at x! 0, shown by a

thick black line, is the one used in the Stokes–Wilson

approximation. It is studied above in detail and plotted in Figs.

1–4 by thin red lines. It is Gaussian in the central part, see Fig.

7(a), and possesses the ��3 power law at the tails, see Fig. 7(b).

In the opposite limit x� 1, the whole probability distribution

is Gaussian, since the displacements Uðr1Þ and Uðr2Þ are

decorrelated and the central limit theorem is applicable. The

transition from one limit to the other proceeds in a quite

peculiar way. The width of the central Gaussian part of the

distribution does not notably change as long as x � 1. The ��3

power law also persists up to some x-dependent value of

strain, and then the probability abruptly drops down. Similar

distributions, combining two notably different regions, were

found in the study of the velocity difference in a system of

random vortices (Min et al., 1996).

Thick lines in Fig. 8 present the correlation functions GðxÞ

obtained by a direct Monte Carlo calculation using equation

(2) (Kaganer & Sabelfeld, 2010). We also calculated these

correlation functions using equation (55) with the probability

density distributions PxðExÞ from Fig. 7, and found that these

two calculations agree fully with each other. Thin lines in Fig. 8

present the Stokes–Wilson approximation given by equation

(4), i.e. by using the probability density distribution at x! 0

in the integral (55) instead of the whole set of the distributions

for different x. The Stokes–Wilson approximation agrees with

the direct calculation of the correlation function as long as

Rc � 1, but notably deviates from it for small Rc. In this latter

case, the correlation function tends to a finite value in the limit

x!1 reflecting the long-range order, while the Stokes–

Wilson approximation probes the local strain and does not
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Figure 7
Monte Carlo calculation of the probability density distributions of
spatially averaged strain Ex for different distances x. The model of
random uncorrelated dislocation pairs with the exponential distribution
of the distances between dislocations, the mean distance in the pairs
Rc ¼ 5 (all distances are in the units of the mean distance between
dislocations n�1=2).

Figure 8
Correlation functions GðxÞ calculated by the Monte Carlo method: the
direct calculation by equation (2) (thick lines) and in the Stokes–Wilson
approximation by equation (4).



catch the long-range order. The two curves still coincide for

x � 1. As a result, on Fourier transformation (1) from the

correlation function GðxÞ to the intensity distribution IðqÞ, the

tails of the curve at q> 1 are described by the Stokes–Wilson

approximation, but the central part of the distribution is not.

Since the limit Gðx!1Þ is equal to the Debye–Waller factor

expð�2WÞ, we find, in agreement with the analysis of the

previous sections, that the Stokes–Wilson approximation

describes the whole intensity distribution when the Debye–

Waller factor is zero or negligibly small, and fails when the

Debye–Waller factor increases. Fig. 8 is a real-space presen-

tation of the same behaviour as described in the reciprocal-

space representation in the previous sections.

To reveal the behaviour of the correlation function GðxÞ at

small x, the inset in Fig. 8 shows the same functions as in the

main plot, calculated by the Monte Carlo method, and

presents the x dependence of ln½GðxÞ�=x2. One can see that for

x � 1, the curves follow the ln½GðxÞ�=x2 / ln x dependence

given by equations (43), (44). This plot explicitly shows that

the Warren & Averbach (1950, 1952) approximation does not

take into account the logarithmic dependence in the function

f ð	Þ.

5. Conclusions

We have performed Monte Carlo simulations for different

models of distributions of straight dislocations and found that

the diffraction profiles and the strain probability distributions

are very close to each other. In other words, the Stokes–

Wilson approximation has a broad applicability range.

Numerical calculation of the strain probability distribution is

several orders of magnitude faster, since it does not involve an

average of oscillating terms needed in a direct calculation of

the peak profile. The strain probability distribution can be an

effective way of diffraction profile calculation for more

complicated dislocation distributions, for which direct calcu-

lation is too computationally demanding.

Numerical and analytical calculations of the strain prob-

ability distributions of dislocations show that the distributions

have a Gaussian shape only in the central part of small strain.

This central part is due to contributions of many surrounding

dislocations. The tails are due to large strain from a single

closest dislocation and follow a power law.

For straight dislocations, the Stokes–Wilson approximation

has the same applicability range as the Krivoglaz–Wilkens

formula, and gives the same result. They are both described by

Fourier transform of the correlation function, obtained by

Krivoglaz & Ryaboshapka (1963) and Wilkens (1970a,b,

1976), which has a structure GðxÞ 
 expð�x2 ln xÞ (here all

constants are omitted and only the structure of the expression

is shown). It is the term ln x in the exponent that gives rise to

the algebraic tails of the profiles. However, for smooth

calculation of the Fourier integral in the whole range of x, this

term needs to be modified. Besides the Wilkens’ function f ð	Þ
used for this purpose, we have proposed and plotted in Fig. 6

three other functions which can equally well be used instead.

We purposely modified the models of dislocation distribu-

tions to find the limits of the applicability of the Stokes–

Wilson approximation. The approximation fails when the

system possesses a long-range order shown by the coherent

Bragg peak. In numerical calculations, the presence of long-

range order can be traced by calculating the Debye–Waller

factor. When it is less than 10�3, the effect of long-range order

on the diffraction profiles is negligible. With increasing

reflection order, the Debye–Waller factor decreases, and the

applicability of the Stokes–Wilson approximation improves.

Hence, this approximation can be applied to higher-order

reflections even when it is not applicable for low reflection

orders.

This work has been funded by Deutsche Forschungs-

gemeinschaft (DFG) grant KA 3262/2-2 and the Russian
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